Lower Bounds for Ramsey Numbers for Complete Bipartite and 3-Uniform Tripartite Subgraphs

نویسندگان

  • Tapas Kumar Mishra
  • Sudebkumar Prasant Pal
چکیده

Let R(Ka,b, Kc,d) be the minimum number n so that any n-vertex simple undirected graph G contains a Ka,b or its complement G′ contains a Kc,d. We demonstrate constructions showing that R(K2,b, K2,d) > b + d + 1 for d ≥ b ≥ 2. We establish lower bounds for R(Ka,b, Ka,b) and R(Ka,b, Kc,d) using probabilistic methods. We define R′(a, b, c) to be the minimum number n such that any n-vertex 3-uniform hypergraph G(V, E), or its complement G′(V, E) contains a Ka,b,c. Here, Ka,b,c is defined as the complete tripartite 3-uniform hypergraph with vertex set A∪B∪C, where the A, B and C have a, b and c vertices respectively, and Ka,b,c has abc 3-uniform hyperedges {u, v, w}, u ∈ A, v ∈ B and w ∈ C. We derive lower bounds for R′(a, b, c) using probabilistic methods. We show that R′(1, 1, b) ≤ 2b + 1. We have also generated examples to show that R′(1, 1, 3) ≥ 6 and R′(1, 1, 4) ≥ 7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Diagonal Forms, Linear Algebraic Methods and Ramsey-Type Problems

This thesis focuses mainly on linear algebraic aspects of combinatorics. Let Nt(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of Nt(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H. As a continu...

متن کامل

On size multipartite Ramsey numbers for stars versus paths and cycles

Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...

متن کامل

Some Ramsey numbers for complete bipartite graphs

Upper bounds are determined for the Ramsey number ](m,n), 2 :; m n. These bounds are attained for infinitely many n in case of m 3 and are fairly close to the exact value for every m if n is sufficiently large.

متن کامل

The Lifting of Graphs to 3-uniform Hypergraphs and Some Applications to Hypergraph Ramsey Theory

Given a simple graph Γ, we describe a “lifting” to a 3-uniform hypergraph φ(Γ) that sends the complement of Γ to the complement of φ(Γ). We consider the effects of this lifting on cycles, complete subhypergraphs, and complete subhypergraphs missing a single hyperedge. Our results lead to natural lower bounds for some hypergraph Ramsey numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Graph Algorithms Appl.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013